§ 13. Teoremele de completitudine și compactitate

În paragraful 11 s-a arătat că relația modelului \(M \) satisfacă propoziția \(\sigma \) relativ la șiul \(x_1, \ldots, x_n \) de obiecte din domeniul \(A \) al lui \(M \) nu depinde, de fapt, de șiul \(x_1, \ldots, x_n \); teorema (11.3.1) exprimă exact acest fapt: relația de satisfacere este, în cazul propozițiilor, binară. Ea este o relație între un model și o propoziție, și nu dependă de alceva (de pădă, la un șiul \(x_1, \ldots, x_n \).

(13.1) Propoziția \(\sigma \) este adevarată în modelul \(M \) dacă există un șiul \(x_1, \ldots, x_n \) astfel încât (sau, echivalent, pentru orice șiul \(x_1, \ldots, x_n \)) \(M \models \sigma(x_1, \ldots, x_n) \).

Cum să se stabilească modelul \(M \), atât sau și simplu \(M = \sigma \). Acesta reprezintă orice relație se cifrează: \(\sigma \) este adevarată în \(M \); sau: \(M \) este un model al lui \(\sigma \); sau: \(M \) satisfacă pe \(\sigma \); sau: \(\sigma \) este satisfăcută de \(M \).

Vom spune că:

a) \(\sigma \) e fals în \(M \) dacă nu e adevarat că \(M \models \neg \sigma \) (echivalent, dacă \(M \models \sigma \));

b) \(\sigma \) e validă dacă \(\sigma \) este adevarată în orice model \(M \), în simboluri \(\models \sigma \);

c) \(\sigma \) e realizabilă dacă există un model \(M \) în care \(\sigma \) e adevarat;

d) \(\sigma \) este un model al lui \(\Sigma \); în simboluri \(M \models \Sigma \), dacă \(M \) este un model pentru orice propoziție \(\sigma \) din \(\Sigma \);

e) propoziția \(\tau \) este consecință unei propoziții \(\sigma \), în simboluri \(\sigma \models \tau \); dacă orice model al lui \(\sigma \) este și model al lui \(\tau \);

f) propoziția \(\sigma \) e consecință unei mulțimi de propoziții \(\Sigma \); în simboluri \(\Sigma \models \sigma \), dacă orice model al lui \(\Sigma \) este și model al lui \(\sigma \).
g) un model M este finit dacă domeniul său A este o mulțime finită; M
este infinit numărabil dacă A este o mulțime infinit numărabilă etc.;

h) două modele M_1 și M_2, ale lui L sunt elementar echivalente în simboluri
$M_1 = M_2$, dacă orice propoziție adevărată în M_1 este adevărată și în M_2, și invers;
altfel zis, dacă $Th(M_1) = Th(M_2)$.

Prin definiția (h) s-a introdus relația \equiv între modele. Se verifică imediat
că aceasta este (i) reflexivă; (ii) simetrică; (iii) tranzitivă, deci este o relație de
echivalență între modele. În paragraful 9 fusese introdusă o altă relație de
echivalență între modele, cea de izomorfism \cong. Relația de echivalență elementară
primește multimi de propoziții adevărate în cele două modele; cea de izomor-
fism este o relație între structurile celor două modele. Întrebarea care se pune
imediat e următoarea: sunt cele două relații la fel de tari? Adică, problema e dacă
au loc următoarele raporturi:

a) Dacă două modele sunt izomorfe, atunci ele sunt elementar echivalente,
în simboluri
dacă $M_1 \equiv M_2$, atunci $M_1 = M_2$.

b) Dacă două modele sunt elementar echivalente, atunci ele sunt izomorfe,
în simboluri
dacă $M_1 = M_2$, atunci $M_1 \equiv M_2$.

Propoziția (a) este adevărată, adică are loc
(13.2) Dacă $M_1 = M_2$, atunci $M_1 \equiv M_2$.

Demonstrație. Să presupunem că cele două modele nu sunt elementar echi-
valente, dar sunt izomorfe. Atunci există o propoziție φ astfel încât $M_1 = \varphi$,
și $M_2 = \neg \varphi$. Prin inducție asupra complexității lui φ vom arăta că aceasta
contrazice cerința de izomorfism.

(i) Dacă φ este atomară și este de forma $t = t$, avem $M_1 = \varphi$, dar
$M_2 = \neg \varphi$. Dar $M_1 = \varphi$, dacă $I_1(t_1) = I_1(t_2)$, adică $M_1 = I_1(t_1) = I_1(t_2)$; dar s-a presupus că
$M_2 = \neg (t_1 = t_2)$.

(ii) Dacă φ este atomară și este de forma $P(t_1, ..., t_n)$, avem $M_1 = P(t_1, ...
$t_n)$ dacă $I_1(t_1, ..., t_n) = I_1(P)$, adică $(x_1, ..., x_n) \in P$. Din izomorfismul lui M_1
și M_2, decurge că $(f(x_1), ..., f(x_n)) \in R \equiv I_2(P)$. Dar $f(x_1) = I_2(t_1), ...
$f(x_n) = I_2(t_n)$ și deci $I_2(t_1), ..., I_2(t_n) \in I_2(P)$, adică $M_2 = P(t_1, ... t_n)$ și iarăși se contrazice
presupunerea că $M_2 = \neg P(t_1, ... t_n)$.

(iii) Cazurile când φ este o propoziție $-\psi$ sau $\varphi \land \chi$ sau $(\forall \psi)$ sau $\varphi \psi$ sunt lăsat
ca exerciții.

Teorema (13.2) spune următorul lucru: două sisteme — colecții de obiecte,
relații și funcții pe aceste obiecte — dacă au aceeași structură (= sunt izomorfe),
atunci vor fi caracterizate prin aceeași propoziții (privitoare la acele obiecte,
relații, funcții). Dacă, de pildă, într-o uzină de automobile două produse sunt de același tip, ne putem aștepta ca ele să aibă aceleași performanțe. Tot ca apliciune a teoremei (13.2) poate fi amintit studiul prototipurilor și al modelilor la scară aeriă, avion sau vapor.

Exercițiu (admițându-se teza identității între minte și corp): ce se poate infera prin această teoremă din situația în care savanții ar produce o copie fizică exactă a lui Bill Clinton?

Să trecem acum la relația (b). Ea susține că două modele (sisteme) care sunt caracterizate prin aceleași propoziții au aceeași structură. Căci, dacă două modele M_1 și M_2 sunt modele pentru aceleași propoziții, dar nu sunt izomorfe, atunci înseamnă că, de pildă, în M_1 are loc o relație $R(x, x')$ între două obiecte din domeniul A_1, în M_2 nu are loc relația corespunzătoare R' între obiectele y și y' din A_2 corespunzătoare celor din A_1. Să ne amintim că în orice model, pentru orice propoziție φ, sau ψ, sau $\phi = \varphi$ e adevărată în acel model; în particular, în M_1 e adevărată sau propoziția φ care descrie relația $R(x, x')$, sau cea care a însemnat că această relație nu are loc, adică $\neg \varphi$. Desigur, înțelegând că prima relație e îndeplinită. Dar φ e falsă în M_2, fiindcă $M_2 \models \varphi(y, y')$ nu are loc. Atunci ar însemna că ϕ e adevărată în M_1 și falsă în M_2, ceea ce înseamnă propoziția că cele două modele sunt elementar echivalente.

Raționamentul expus mai sus nu este însă corect. Într-adevăr, în desfășurarea lui s-a presupus la un moment dat că relația $R(x, x')$ fi se corespunde propoziția φ. Or, acest lucru trebuie dovedit. Când modelele sunt finite, nu e nici o dificultate să facem ca fiecarei relații din model să-i corespundă o propoziție (atomară) și fiecărei relații funcționale între obiecte să-i corespundă, de asemenea, o propoziție (atomară). În cazul modelor finite avem deci

(13.3) Dacă $M_1 \equiv M_2$ și M_1, M_2 sunt finite, atunci $M_1 \equiv M_2$.

Dar dacă cele două modele sunt infinite, atunci relația (b) nu mai are loc în chip obligatoriu. Un prim exemplu în acest sens va fi oferit chiar în acest paragraf (propoziția (13.11)), ca un corolar al teoremei de compactitate.

Obiectivul principal al acestui paragraf este acela de a demonstra următoarele teoreme:

(13.4) Teorema de completitudine a lui Gödel. Oricare ar fi propoziția ϕ a lui L, ϕ este teoremă a lui L dacă ϕ este validă, în simboluri:

\[\models \phi \]

(13.5) Teorema generalizată a completitudinitii. Oricare ar fi mulțimea Σ de propoziții ale lui L, Σ este consistentă dacă are un model.

(13.6) Teorema de compactitate. O mulțime Σ de propoziții ale lui L are un model dacă orice submulțime finită a lui Σ are un model.

113
Vom demonstra mai întâi teorema centrală, (13.5), iar pe celelalte două le vom obține drept corolare ale acesteia. Tehnica de demonstrare a teoremei (13.5), pe care o vom folosi în cele ce urmează, a fost elaborată în 1949 de L. Henkin. Ea se bazează pe următoarea idee: atunci când se construiește un model M pentru un limbaj L, natura elementelor din domeniul acestui model nu e relevantă; nu interesează deci ce sunt obiectele din domeniul A al lui M, nici conținutul concret al relațiilor ori funcțiilor definite în M. E drept că pentru, de pildă, aritmetica lui Peano obiectele din modelul M al acestei teorii ne așteptăm să fie numere; ne așteptăm deci ca M să fie modelul intenționat, standard al teoriei. Dar acest lucru nu e necesar: e model al lui AP orice sistem care satisface toate axiomele acestei teorii, indiferent de natura obiectelor din domeniul acestui model.

Ideea lui Henkin a fost următoarea: e posibil să construim un model al unui limbaj L cu ajutorul unor obiecte pe care le avem deja la îndemână, pe care le-am construit deja. Or, noi nu avem la dispoziție, atunci construim pe AP, de pildă, nimic dat anterior, cu o singură excepție: limbajul L_{AP}. Iar printre expresiile lui L_{AP} se găsesc unele care sunt folosite pentru a desemna obiecte, deci termeni lui L_{AP}. Dintre termeni, unii nu cuprind variabile, deci desemnează în mod obișnuit obiecte constante (numere fixate). Atunci am putea lua ca domeniu al unui model al AP chiar mulțimea acestor termeni constanți al lui L_{AP}.

În general, deci, ideea lui Henkin e următoarea: putem construi un model al limbajului L în care obiectele din domeniul să fie înseși constantele limbajului L. În acest caz, relațiile dintre obiecte vor putea fi identificate cu înseși predicatelor lui L care se aplică acestor constante individuale, iar funcțiile definite pe acest domeniu cu înseși simbolurile funcționale ale lui L. O consecință imediată a acestei strategii – consecință care va fi exploată mult în cele ce urmează – e următoarea: în domeniul A al acestui model nu pot să existe mai multe obiecte decât formule ale limbajului L. Căci, cum fiecare obiect din A este o constantă individuală a lui L – fie c aceasta – atunci există propoziția $c = c$; și deci pentru fiecare obiect din domeniul există o formulă a lui L.

Un astfel de model al lui L se numește model Henkin.

Această strategie intuitivă nu se poate aplica fără direcție pentru a construi un model pentru L. Căci s-ar putea ca limbajul L să nu cuprindă nici o constantă individuală; și vor putea interveni și alte dificultăți. Formularea prețioasă a strategiei expuse mai sus va necesita, de aceea, anumite complicații. Două dintre ele sunt mai importante:

1) Dacă în L nu avem destule constante individuale care să servească drept obiecte, trebuie să îl adăugăm lui L o mulțime de constante; trebuie să treacem deci la un alt limbaj L', care cuprinde toate aceste constante, alături de simbolurile lui L. Iar modelele construite vor fi modele ale lui L'.
2) Relația de identitate creează alte complicații. Dacă \(c \) și \(c' \) sunt două constante individuale ale lui \(L \), atunci într-un model Henkin lor le vor corespunde două obiecte diferite (pe care să le notăm tot cu \(c \) și \(c' \)). Să presupunem acum că într-o mulțime \(\Sigma \) consistentă de propoziții ale lui \(L \) e cuprinsă propoziția \(c = c' \); atunci, într-un model Henkin al lui \(\Sigma \) această propoziție va fi adevărată. Dar pentru aceasta trebuie ca celor două constante \(c \) și \(c' \) să le corespundă același obiect din domeniu. Or, am văzut că într-un model Henkin acest lucru nu se poate întâmpla. E nevoie, de aceea, de o anumită sofisticare a modelelor Henkin.

Pentru a face mai ușor de înțeles demonstrația, vom restrânge raționamentele la cazul în care:

a) limbajele \(L \) considerate au un număr finit sau cel mult infinit numărabil de simboluri (și deci și de constante individuale); și

b) mulțimea variabilelor individuale \(v_0, ... v_n \ldots \) folosite în formalizarea lui \(L \) este infinit numărabilă, adică \(n \in \omega \).

(13.7) Atunci când sunt satisfăcute condițiile (a) și (b) de mai sus, mulțimea formulelor lui \(L \) este infinit numărabilă.

Fie \(\varphi \) o formulă a lui \(L \), având cel mult o variabilă liberă. Potrivit axiомelor quantificatorilor, știm că formula

(1) \((\forall v)\varphi \rightarrow \varphi(c) \)

unde \(\varphi(c) \) este rezultatul substituirii în \(\varphi \) a fiecărei apariții libre a lui \(v \) cu constanta \(c \) a lui \(L \), este teoremă. Așadar,

\((\forall v)\varphi \rightarrow \varphi(c) \)

Pe de altă parte, formula

(2) \((\exists v)\varphi \rightarrow \varphi(c) \)

nu este teoremă. Căci dacă ar fi așa, atunci punând \(\varphi = (\neg \varphi) \) am obținut

(3) \((\exists v)\neg \varphi \rightarrow \neg \varphi(c) \)

și de aici prin contrapoziție

(4) \(\varphi(c) \rightarrow (\exists v)\neg \varphi \)

(5) \(\varphi(c) \rightarrow (\forall v)\varphi \)

ceea ce, împreună cu (2), ar da

(6) \((\exists v)\varphi \rightarrow (\forall v)\varphi \)

Or, propozițiile (vi) sunt toate adevărate numai în modelele cu un singur obiect în domeniu, ceea ce ar însemna că toate modelele lui \(L \) să aibă un singur obiect.

Fie acum \(T \) o teorie formulată în \(L \). \(T \) este, desigur, o mulțime de propoziții. Pentru unele formule \(\varphi \) ale lui \(L \) cu o singură variabilă este posibil ca

(7) \(T \vdash (\exists v)\varphi \rightarrow \varphi(c) \)
pentru o constantă individuală a lui \(L \). Dar, de bună seamă, nu avem nici o garanție că oricare ar fi formula \(\varphi \) a lui \(L \), din \(T \) va fi deductibilă o formulă de tipul (viii) \((\exists v)\varphi \rightarrow \varphi(c) \)

Dar dacă pentru orice formulă \(\varphi \) a lui \(L \) cu cel mult o variabilă liberă este adevărat că

\[T \vdash (\exists v)\varphi \rightarrow \varphi(c) \]

pentru un \(c \) din \(L \), vom spune că teoria \(T \) are mărtori în \(L \). Fie \(C \) mulțimea acelor \(c \) care, în acest caz, fac adevărată expresia (vii), pentru orice \(\varphi \). Vom spune că \(C \) este mulțimea mătoriai lor \(T \) în \(L \).

Situarea la care vrem să ajungem este următoarea: ca orice teorie \(T \) să aibă o mulțime \(C \) de mărtori. De cele mai multe ori înțelegeam, acest lucru nu se întâmplă. De aceea trebuie să facem să se întâmple așa ceva. Vom proceda după cum urmează:

1) limbaajului \(L \) vom adăuga o mulțime \(C \) de constante individuale; obținem astfel un nou limbaaj \(L' \);

2) extindem teoria \(T \), formulată în \(L \), la o nouă teorie \(T' \), formulată în \(L' \), pentru care \(C \) este mulțimea mătoriai ei în \(L' \).

De bună seamă că aici interesează numai teorii consistente. Căci, dacă \(T \) ar fi inconsistentă, atunci (vii) ar fi adevărată pentru orice \(\varphi \) și deci \(T \) ar avea automat mărtori în \(L \). În plus, teoria \(T' \) la care este extinsă \(T \) trebuie iarăși să fie consistentă;

Trebuie notat de asemenea că dacă pentru o teorie \(T \), avem pentru un anumit \(\varphi \)

\[T \vdash (\exists v)\varphi \rightarrow \varphi(c) \]

nu e obligatoriu ca pentru o altă teorie \(T' \) să avem de asemenea

\[T' \vdash (\exists v)\varphi \rightarrow \varphi(c) \]

De aceea, dacă \(T \) este extinsă în limbaajul \(L' \) la o teorie \(T_1 \), în care \(T \) are mărtori, nu avem garanția că în \(L' \) extinderea \(T_1 \) a lui \(T \) este de asemenea mărtori. Deci limbaajul \(L' \) trebuie construit pentru fiecare teorie \(T \) în parte.

(13.8) Fie \(T \) o mulțime consistentă de propoziții ale lui \(L \). Fie \(C \) o mulțime numărabilă infinită \(c_0, \ldots, c_n, \ldots \) de constante individuale care nu aparțin lui \(L \). Să notăm cu \(L' = L \cup C \) limbaajul obținut prin adăugarea la \(L \) a constantei din \(C \). Atunci există o teorie \(T' \) în \(L' \) care:

a) este consistentă;

b) include teoria \(T \), deci \(T \subseteq T' \);

c) are pe \(C \) ca multime a mătoriai ei în \(L' \).

Demonstrație. Mulțimea formulelor lui \(L' \) este și ea infinit numărabilă. În consecință, și mulțimea formulelor cu cel mult o variabilă liberă ale lui \(L' \) este
numărabilă. De aceea, putem să arătăm aceste formule într-un șir \(\varphi_0, \ldots, \varphi_n, \ldots \) \((n \in \omega)\). Să construim un șir infinit de teorii
\[T = T_0 \subseteq T_1 \subseteq \ldots \subseteq T_n \subseteq \ldots \]
și un fel de următor. Fie \(\varphi_n \) a \(n \)-a formulă din șirul nostru. Atunci punem
\[T_{n+1} = T_n \cup \{(\exists \nu_n) \varphi_n \rightarrow \varphi_n(c_\nu)\} \]
unde \(\nu_n \) este variabilă liberă care apare în \(\varphi_n \), dacă există; și \(\nu_n = \nu_\nu \), dacă nu există o astfel de variabilă în \(\varphi_n \). În șirul de formule ale lui \(L' \) pe care \(\varphi_n \) nu a fost în vedere au apărut, înaintea lui \(\varphi_n \), formulele \(\varphi_0, \ldots, \varphi_{n-1} \). Acestea sunt în număr finit, și fiecare dintre ele conține un număr finit de simboluri din \(L' \). Așadar, în aceste formule au apărut un număr finit de simboluri constante din mulțimea \(C \). Înainte de \(T_{n+1} \), în teorile \(T_i \) \((i \leq n)\) avem formule de forma \((\exists \nu_n) \varphi_i \rightarrow \varphi_i(c_\nu) \) în care, de asemenea, au apărut simboluri în \(C \) în număr finit. De aceea \(\varphi_n \) nu ajunge pe \(c_\nu \); \(c_\nu \) fiind prima constantă individuală din șirul \(c_0, \ldots, c_{n-1} \), care nu a apărut în \(T_n \) și nici în \(\varphi_n \).

Acum să arătăm că fiecare \(T_{n+1} \) este o mulțime consistentă. Prin inducție am presupus că toate teorile \(T_i \) \((i \leq n)\) sunt consistentă. Dacă \(T_{n+1} \), la rândul el, nu este consistentă, atunci am avea
\[T_n \vdash (\exists \nu_n) \varphi_n \rightarrow \varphi_n(c_\nu) \]
adică, prin logica propozițională,
\[T_n \vdash (\exists \nu_n) \varphi_n \land \neg \varphi_n(c_\nu) \]
Dar \(c_\nu \) nu apar nici în \(\varphi_n \), nici în celelalte propoziții din \(T_n \). Așadar, putem concluza prin generalizare universală că
\[T_n \vdash (\forall \nu_n) ((\exists \nu_n) \varphi_n \land \neg \varphi_n(c_\nu)) \]
unde
\[T_n \vdash (\exists \nu_n) \varphi_n \land (\forall \nu_n) \neg \varphi_n(c_\nu) \]
adică
\[T_n \vdash (\exists \nu_n) \varphi_n \rightarrow (\exists \nu_n) \varphi_n \]
ceea ce contrazice ipoteza că \(T_n \) este consistentă.

Acum definim \(T^* = \bigcup_{n \in \omega} T_n \). Evident, \(T^* \) include orice \(T_n \) și, în particular,
\[T = T_\varphi \subseteq T^* \]. În al doilea rând, \(T^* \) este consistentă; într-adevăr, dacă \(T^* \) nu ar fi consistentă, atunci ar exista o demonstrație \(\psi_0, \ldots, \psi_m \) a unei contradicții în \(T^* \). Or, se poate alege un \(n \) astfel încât toate aceste propoziții \(m \) să apară în \(T_n \). Dacă deci această \(T_n \) ar fi contradictorie, ceea ce am presupus că nu e cazul. În sfârșit, \(T^* \) are pe \(C \) ca mulțime a martorilor ei în \(L' \). Căci, dacă \(\varphi_n \) este o formulă a lui \(L' \) cu multe variabile liberă, atunci \(\varphi_n = \varphi_n \) pentru \(n \in \omega \) și \(\psi = \psi_n \). Atunci \(T_{n+1} \) e a deducibilă propoziția \((\exists \nu_n) \varphi_n \rightarrow \varphi_n(c_\nu) \), pentru \(c_\nu \) din \(C \). Dar \(T_{n+1} \subseteq T^* \) și deci această propoziție a deducibilă și în \(T^* \), q.e.d.
Să observăm acum următorul lucru: dacă \(T \) are o mulțime \(C \) de martori în \(L \), iar \(T \subseteq T' \), atunci \(C \) este o mulțime de martori în \(L \) și pentru \(T' \). În particular:

(13.9) Dacă \(T \) are o mulțime \(C \) de martori în \(L \), atunci ea poate fi extinsă la o mulțime maximală consistentă \(T' \) având pe \(C \) ca mulțime de martori în \(L \).

Prin lema (13.8) s-a făcut primul înțeles în construirea modelelor Henkin, Lema (13.10) va arăta cum putem face față și celei de-a doua dificultăți, care proveneau din existența simbolului identitate în formalizarea limbațiului \(L \).

(13.10) Fie \(T \) o mulțime consistentă de propoziții, iar \(C \) o mulțime de martori ai lui \(T \) în limbajul \(L \). Atunci \(T \) are un model \(M \) cu următoarea proprietate: orice obiect din domeniul \(A \) al lui \(M \) este interpretarea unei constante \(c \in C \).

Vom spune că \(M \) este modelul canonic al lui \(T \).

Demonstrație. Potrivit lemei (13.9), există o teorie \(T' \) maximală consistentă care are pe \(C \) ca mulțime de martori în \(L \). Vom arăta că \(T' \) are un model cu proprietatea cerută. Cum \(T' \) e o extindere a lui \(T \), va însemna că acel model e și model al lui \(T \).

Pentru a întâmpina dificultatea (2) menționată înaintea lemei (13.7), vom proceda astfel: interpretăm o constantă \(c \) în modelul \(M \) nu ca \(c \) înșiși, ci ca mulțimea tuturor constantelor lui \(C \) care în \(T' \) stau în relație de identitate cu \(c \). Să presupunem că propoziția \(c = c' \) e deductibilă din \(T' \), deci că

\[
T' \vdash c = c'
\]

Cum \(T' \) e maximal consistentă, înseamnă că avem și

\[
(c = c') \in T'.
\]

Să notăm cu \(E(c) \) mulțimea acestor \(c' \); în simboluri,

\[
E(c) = \{ c' \mid (c = c') \in T' \}
\]

Fie \(d \in L \). Dacă \(d \in E(c) \) și \(d \in E(c) \), atunci \(E(c) = E(c') \). Într-adevăr, avem

\[
(d = c) \in T' \quad \text{și} \quad (d = c') \in T'.
\]

Apreciind axiomele identității, avem \((c = c') \in T' \).

Dacă pentru un \(d' \in C \) avem \(d' \in E(c) \) dar \(d' \notin E(c') \), atunci \((d' = c) \) e care \((d' = c') \in T' \). Decurje în \(d' = c' \in T' \) și \((c = c') \in T' \) decurje că \((d' = c') \in T' \) — contradicție. Prin urmare, o constantă individuală \(d \in L \) nu poate aparține decât unei singure mulțimi de forma \(E(c) \).

Pentru a proba lema (13.10) sunt necesari doi pași: a) să se construiască un model \(M \) care să satisfacă proprietatea dorită; b) să se demonstreze faptul că într-adevăr \(M \) este un model al lui \(T' \).

(a) Modelul \(M \) se construiește astfel:

1) Domeniul \(A \) al lui \(M \) este colecția mulțimilor \(E(c) \), în simboluri

\[
A = \{ E(c) \mid c \in C \}
\]

118
2) Interpretarea constantelor lui L. Fie $d \in L$. Potrivit axiomelor identității, avem

(i) $\vdash d = d$

Prin generalizarea existențială, obținem

(ii) $\vdash (\exists v) \ (v = d)$

Multimea T' este consistentă, și deci

(iii) $T' \vdash (\exists v) \ (v = d)$

Să observăm acum că formula $v = d$ conține o variabilă liberă. Cum T' are pe C ca mulțime de martori în L, încearcă că

(iv) $T' \vdash (\exists v) \ (v = d) \rightarrow d = c$

pentru un $c \in C$. Din (iii) și (iv) decurge

(v) $T' \vdash d = c$

Întrucât T' e maximal consistentă, avem $(d = c) \in T'$. Atunci $d \in E(c)$. Am văzut mai devreme că d nu poate aparține unor multimi diferite $E(c)$ i $E(c')$. Punem $I(d) = E(c) \in A$.

3) Interpretarea predicatelor lui L. Fie P un predicat m-ar. Lui îi corespunde

prin interpretare a relație m-ară R, astfel: pentru orice constante c_1, \ldots, c_m din C,

$R(E(c_1), \ldots, E(c_m)) \ddag P(c_1, \ldots, c_m) \in T'$

Fie acum m constante d_1, \ldots, d_m din L (deci nu neapărat din C). Potrivit celor de mai sus, avem m constante din C astfel încât

$(d_1 = c_1) \in T' \ldots (d_m = c_m) \in T'$

Să presupunem că avem $P(d_1, \ldots, d_m) \in T'$. Potrivit axiomelor identității, decurge că

$\vdash P(d_1, \ldots, d_m) \land (d_1 = c_1) \land \ldots \land (d_m = c_m) \rightarrow P(c_1, \ldots, c_m)$

Atunci vrem așa $P(c_1, \ldots, c_m) \in T'$ și deci $R(E(c_1), \ldots, E(c_m))$. Prin urmare,

$R(E(c_1), \ldots, E(c_m)) \ddag P(d_1, \ldots, d_m) \in T'$

4) Interpretarea simbolurilor funcționale ale lui L. Dacă F este un simbol funcțional n-ar, atunci $I(F) = G$ este o funcție n-ară $A^n \rightarrow A$. G se definește astfel: oricare ar fi constantele c_1, c_2, \ldots, c_n din C,

$G(E(c_1), \ldots, E(c_n)) = E(c) \ddag (F(c_1, \ldots, c_n) = c) \in T'$

Ca și în cazul (3), interpretarea funcției F se construiește și pentru cazul când argumentele și valoarea aceastei funcții sunt constante oarecare (nu neapărat din C) ale lui L.

Cu aceasta, trece la punctul (b) al demonstrației.

b) Trebuie arătat că pentru orice formulă φ,

$\varphi \in T' \ddag M \models \varphi$.

Demonstrația se face prin inducție asupra complexității lui φ. Vom începe cu formulele atomare ale lui L.

119
1) Fie t un termen fără nici o variabilă liberă. Atunci, potrivit interpretării simbolurilor funcționale ale lui L (punctul (4) de mai sus), avem

$$M \models (t = c) \text{ dacă } (t = c) \in T'$$

pentru orice constantă c din C.

În cazul general, trebuie să arătăm că pentru orice t_1 și t_2, $M \models (t_1 = t_2) \text{ dacă } (t_1 = t_2) \in T'$

Să presupunem, într-adevăr, că avem $(t_1 = t_2) \in T'$. Atunci, cum formula $(t_1 = v)$ are o singură variabilă liberă, pe v, înseamnă că $(\exists v) (t_1 = v) \rightarrow (t_1 = c) \in T'$, pentru un c din C.

Dar $(\exists v) (t_1 = v) \in T'$ și deci trebuie că $(t_1 = c) \in T'$. La fel, se arată că $(t_2 = c) \in T'$, pentru un c din C. Dar, conform celui arătate anterior, avem $M \models (t_1 = c) \text{ și } M \models (t_2 = c)$

Ținând cont, pe de altă parte, că $(t_1 = t_2) \in T'$, avem $(c = c') \in T'$ și deci $M \models (c = c')$

de unde

$$M \models (t_1 = t_2)$$

Invers, să presupunem că avem $M \models (t_1 = t_2)$. Aceasta înseamnă că $I(t_1) = E(c) = I(t_2)$. Din definiția interpretării simbolurilor funcționale ale lui L în M, avem

$$(t_1 = c) \in T' \text{ și } (t_2 = c) \in T'$$

de unde, în chip evident,

$$(t_1 = t_2) \in T'$$

2) Fie ϕ o formulă atomară a lui L, fără variabile libere. (Atât în acest pas, cât și în cel anterior, am considerat doar formule atomare în care nu apar variabile libere, deci doar propoziții atomare; motivul este acela că ne interesează să demonstrăm că M este model pentru T', iar T' este o mulțime maximală de propoziții; în T' nu apar formule care nu sunt propoziții.) De pildă, fie $\phi = P(t_1, ..., t_m)$. Atunci

$$M \models P(t_1, ..., t_m) \text{ dacă } P(t_1, ..., t_m) \in T'$$

Fie $P(t_1, ..., t_m) \in T'$. Știm că există $c_1, ..., c_m$ din C decât

$$(t_1 = c_1) \in T', ..., (t_m = c_m) \in T'$$

Atunci, întrucât

$$I(P(t_1, ..., t_m) \wedge (t_1 = c_1) \wedge ... (t_m = c_m) \rightarrow P(c_1, ..., c_m))$$

înseamnă că $P(c_1, ..., c_m) \in T'$ și deci, ținând seama de definiția lui M,

$$R(E(c_1), ..., E(c_m)) \text{ are loc în } M.$$

Dar, pe de altă parte,

$$M \models P(t_1, ..., t_m) \text{ dacă } R(E(c_1), ..., E(c_m))$$

de unde decurge că

$$M \models P(t_1, ..., t_m)$$
Invers, să presupunem că $M = P(t_1, \ldots, t_n)$; atunci $R(E(c_1), \ldots, E(c_m))$, de unde rezultă că $P(t_1, \ldots, t_m) \in T'$. Aplicând iarăși axioma identității, avem

$$\vdash P(c_1, \ldots, c_m) \land (t_1 = c_i) \land \ldots \land (t_n = c_m) \rightarrow P(t_1, \ldots, t_n)$$

de unde decurge că $P(t_1, \ldots, t_m) \in T'$.

La fel se poate demonstra când φ este o formulă atomară de forma $F(t_1, \ldots, t_n) = t$.

3) Rămân cazurile în care

a) $\varphi = \psi$

b) $\varphi = \psi \land \chi$

c) $\varphi = (\exists v) \psi$

Primele cazuri vor fi lăsate ca exerciții. Să îl considerăm pe al treilea. Așadar, trebuie să arătăm că

$$M \models (\exists v) \psi \quad \text{dacă} \quad (\exists v) \psi \in T'$$

Necesitatea. Să presupunem că $(\exists v) \psi
\in T'$. Dar pentru ca această formulă să fie o propoziție, trebuie ca în ψ să apară cel mult o variabilă liberă. Or, T' are în L o mulțime C de martori, deci $(\exists v) \psi \rightarrow \psi(c) \in T'$ pentru un c din C.

Prin modus ponens, obținem $\psi(c) \in T'$. Potrivit inducției, avem atunci

$$M \models \psi(c)$$

Dar, cum

$$M \models (\psi(c) \rightarrow (\exists v) \psi)$$

decurge că

$$M \models (\exists v) \psi.$$

Invers, dacă $M \models (\exists v) \psi$, atunci pentru un obiect $E(c) \in A$, avem

$$M \models \psi(E(c))$$

adică

$$M \models \psi(c)$$

Prin inducție, stim că $\psi(c) \in T'$. Însă, potrivit axiomelor cuantificatorilor,

$$\vdash \psi(c) \rightarrow (\exists v) \psi$$

și deci $(\exists v) \psi \in T'$.

Așadar, M este model pentru T'. Întrucât $T \subseteq T'$, însemnă că M este model și pentru T, q.e.d.

Cu aceasta, sunt pregătite condițiile pentru a demonstra teoremele (13.4), (13.5) și (13.6).

Demonstrația teoremei (13.5):

1. Necesitatea. Presupunem că mulțimea Σ de propoziții ale lui L are un model M și să arătăm că ea este consistentă. Dar dacă nu ar fi consistentă, ar exista o demonstrație $\varphi_1, \ldots, \varphi_n$ a lui $(\psi \land (¬ \psi))$ din Σ.

121
Exercițiul: să se arate că orice \(\varphi \) este adevarată în \(M \). Cum \(\varphi \) = \((\psi \land \neg \psi) \) nu poate fi adevarată în nici un model \(M \), să se deducă faptul că \(\varphi \), ..., \(\varphi \nu \) nu e o demonstrație a lui \(\varphi \nu \) deci că se obține o contradicție.

2. Suficiența. Presupunem că \(\Sigma \) e consistentă și să arătăm că are un model. Mai întâi vom arăta că o extindere a ei \(\Sigma' \) are un model. Construim un limbaj \(L' = L \cup C \), astfel încât, potrivit lemei (13.8), extinderea în \(L' \) a lui \(\Sigma \) — anume \(\Sigma' \) — are pe C ca multime de mărtori. În al doilea rând, lema (13.10) arată că există un model \(M' \) al lui \(\Sigma' \) în \(L' \). Deoarece \(\Sigma \subseteq \Sigma' \), înseamnă că \(M' \) e un model și al mulțimii \(\Sigma \), în simboluri \(M' \models \Sigma \). Să notăm că \(M' \) este un model al lui \(\Sigma \) în limbajul \(L' \). Dar \(L' \) diferă de \(L \) doar prin faptul că are în plus anumite constante. Deci dacă în definiția lui \(M' \) nu avem în vedere că unele obiecte sunt interpretări ale constantelor din \(C \), obținem un model \(M'' \), care

1) e un model al \(\Sigma \); 2) e un model al lui \(\Sigma \) în limbajul \(L \), q.e.d

Trecem acum la teorema (13.4). Ea arată că clasa teoremelor lui \(L \) este aceeași cu clasa propozițiilor valide ale lui \(L \).

1. Suficiența: Dacă o propoziție \(\sigma \) este teorema, atunci este validă. Să presupunem că \(\sigma \) este teorema. Atunci există o demonstrație \(\varphi \nu \), ..., \(\varphi \nu = \sigma \) a lui \(\sigma \) în \(L \). Prin inducție se arată că orice formă \(\phi \) este adevarată în orice model \(M \) al lui \(L \), și deci \(\varphi \nu = \sigma \) e adevarată în orice model \(M \) al lui \(L \).

2. Necessitatea: Dacă o propoziție \(\sigma \) este validă, atunci este teoremă. Adică: dacă \(\sigma \) e adevarată în toate modelele \(M \) ale lui \(L \), atunci \(\sigma \) e teoremă. În logica propozițională există tautologia (= legea contrapoziției):

\[\models ((\varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \varphi)) \]

Aplicând-o aici, decurge că ceea ce trebuie să devedem este că: dacă \(\sigma \) nu este o teoremă, atunci \(\sigma \) nu este adevarată în toate modelele lui \(L \). Deci există un model \(M \) în care \(\sigma \) e adevarată, în simboluri \(M \models \sigma \). Să presupunem deci că \(\sigma \) nu e teoremă. Dar \(\sigma \) e teoremă dacă \(\sigma \) e inexistență. Așadar, dacă \(\sigma \) nu e o teoremă, înseamnă că \(\neg \sigma \) e o mulțime constantă de propoziții. Atunci, potrivit teoremei (13.5), \(\neg \sigma \) are un model \(M \), deci \(M \models \neg \sigma \), q.e.d.

În sfârșit, să demonstrăm teorema de compactitate, (13.6): o mulțime \(\Sigma \) de propoziții are un model dacă orice submulțime finită \(\Gamma \) a lui \(\Sigma \) are un model.

1. Suficiența: Dacă \(M \) e un model al lui \(\Sigma \), atunci e model și pentru submulțimea finită \(\Gamma \) a lui \(\Sigma \). Acest lucru este evident, fiindcă se observă că \(M \) e model al lui \(\Sigma \) dacă \(M \) e model pentru orice propoziție din \(\Sigma \), deci și pentru orice propoziție din \(\Gamma \).

2. Necessitatea: Dacă oricare ar fi mulțimea finită \(\Gamma \subseteq \Sigma \), \(\Gamma \) are un model, atunci există un model al lui \(\Sigma \). Într-adevăr, să presupunem că orice astfel de
\(\Gamma \) are un model, dar că \(\Sigma \) nu are nici un model. Atunci, potrivit teoremei (13.5), înseamnă că \(\Sigma \) nu este consistentă. Adică, \(\Sigma \vdash (\\psi \land \neg \psi) \). Prin urmare, există o demonstrație \(\varphi_1, \ldots, \varphi_n = (\\psi \land \neg \psi) \) în care intervin un număr finit \(m \leq n \) de propoziții din \(\Sigma \). Fie \(\Gamma \) mulțimea acestora. Dar \(\Gamma \) e inconsistentă, așadar, iarăși potrivit teoremei (13.5), \(\Gamma \) nu are nici un model – ceea ce contrazice supoziția făcută, q.e.d.

O aplicație a teoremei de compactitate

Teorema de compactitate are multe aplicații interesante. Una dintre acestea

e următoarea: în paragraful anterior am menționat modelul standard \(MN \) al

aritmeticii lui Peano. Propozițiile adevărate în acest model, \(Th(MN) \), formează

o mulțime maximal consistentă de propoziții ale lui \(L_{AP} \). Așadar, pentru oricare

propoziție a acestui limbaj, sau aceasta sau contradictoria ei e adevărată în

\(MN \) și, deci, aparține lui \(Th(MN) \). Ar decurge de aici că am obținut o teorie

de ordinul întâi – anume, \(Th(MN) \) – care caracterizează numerele naturale, adică

eu are ca modele numai sisteme de felul lui \(MN \) (deci: modelele lui \(Th(MN) \)

sunt \(MN \) însuși și modelele izomorfe cu \(MN \)).

Această concluzie este însă falsă; pentru că există modele \(M \) ale lui \(L_{AP} \)

care sunt elementar echivalente cu \(MN \), dar nu sunt izomorfe cu acesta. Putem

demonstra că e așa apleând la mai multe metateoreme ale logicii predicatelor.

Teorema de compactitate se poate de aici folosi chiar aici pentru a produce un

model nestandard al \(AP \).

Fie \(L_{AP} = \{0, S, +, \} \) limbajul aritmeticii lui Peano. Vom construi un

nou limbaj \(L' = L_{AP} \cup \{ c \} \), adăugând lui \(L_{AP} \) o constantă \(c \). Să observăm că

\(c \in L_{AP} \) și deci și \(c \in L' \) – pot fi definite diverse relații între numere, de exemplu

relația \(< (n \text{ este (strict) mai mic decât } m) \), în felul următor:

\[n < m = df. (\exists v) (n + Sv = m) \]

Acum, construim o teorie \(\Sigma \) în felul următor: \(\Sigma \) este \(Th(MN) \), căreia i se adaugă

propozițiile:

\[0 < c \]
\[1 < c \]
\[2 < c \]

pentru orice \(n \). Vom arăta că \(\Sigma \) are un model. Într-adevăr, fie \(\Gamma \) o parte oarecare

finită a lui \(\Sigma \). În \(\Gamma \) sunt menționate numere; dar acestea nu pot fi decât în

număr finit, fiindcă \(\Gamma \) e finită. Fie \(n \) cel mai mare dintre acestea. Atunci, luăm

că model al lui \(\Gamma \) modelul standard \(MN \), în care interpretăm \(c \) ca \(Sn \). Dacă
o propoziție σ din Γ aparține lui $Th(MN)$, atunci sigur e adevărată în MN; dacă nu aparține lui $Th(MN)$, atunci e de forma $m < c$. Dar și atunci această propoziție e adevărată, căci interpretarea lui c în MN e luată ca mai mare decât orice număr menționat în Γ, deci și decât m.

Întrucât Γ e o submulțime arecă re finită a lui Σ, prin teorema de compactitate (13.6) decurge că Σ are un model M. Dar, cum $Th(MN)$ e inclusă în Σ, înseamnă că M este model și pentru $Th(MN)$. În M sunt adevărate exact aceleași propoziții ale limbajului L_{AP} al aritmeticii lui Peano care sunt adevărate și în modelul standard al acestei teorii. În M există un obiect (interpretarea lui c) care e mai mare decât toate numerele naturale. În M există un obiect care e un număr infinit. Acest model M este deci un model nestandard al aritmeticii lui Peano (și al teoriei complete a numerelor). El are următoarele caracteristici:

1) este elementar echivalent cu MN, căci în M și MN sunt adevărate exact aceleași propoziții ale lui L_{AP}, anume cele din $Th(MN)$;

2) nu e izomorf cu MN, căci obiectului infinit din domeniul lui M nu-i corespunde nimic în domeniul lui MN.

Așadar, să scriem:

(13.11) Teoria completă a numerelor $Th(MN)$ are un model nestandard.

Acest rezultat ne arată că nu putem întări teorema (13.3) pentru a afirma că dacă două modele sunt elementar echivalente, atunci ele sunt și izomorfe.

Cum arată un astfel de model nestandard al teoriei complete a numerelor? (Un rezultat surprinzător e, cum vom vedea, următorul: dacă în domeniul lui apare un obiect infinit, atunci vor trebui să apară infinit de multe astfel de obiecte infinite). Pentru a răspunde acestei întrebări, vom proceda astfel: MN și M sunt elementar echivalente, adică în ele sunt adevărate exact aceleași propoziții ale limbajului L_{AP} al aritmeticii lui Peano. Plecând de aici, ori de câte ori numerele naturale au o anumită proprietate – adică ori de câte ori o propoziție σ e adevărată în MN – conchidem că obiectele din domeniul lui M au aceeași proprietate (căci σ e adevărată și în M). Apoi, încercăm să descriem ce spune acea propoziție despre obiectele din domeniul lui M.

Fie deci $M = <A, z, s, \&>, \$$. Aici A este domeniul lui M, z este obiectul din A prin care e interpretată constanta 0, deci $I(0) = z$, și mai departe $I(S) = s$, $I(+) = \&$, $I(\cdot) = \$. Să numim obiectele din $A NUMERE$ (obiectele din domeniul lui MN vor fi numite în continuare $numere$). Pentru a-l construi pe M, să plecăm de la unele propoziții adevărate în MN. În MN se poate defini, aşa cum am văzut, relaţia de ordine strictă $mai mic decât$. Prin urmare, o putem defini și în M. Vom nota această relație cu ι. Cum în MN e adevărat că

$(\forall v) \Rightarrow (v < v)$

124
Însemna că în \mathbb{M} această propoziție e de asemenea adevarată și deci că oricare ar fi NUMĂRUL x, nu e adevarat că $x \nmid x$. Relația \nmid și deci și \mid este totală, adică:

$$(\forall v_1) (\forall v_2) (v_1 \nmid v_2 \lor v_2 \nmid v_1)$$

Apoi, știm că orice număr este fie par, fie impar. Adică, dacă x e un număr, atunci există un alt număr y astfel încât:

$$x = y + y \text{ sau } x = y + y + 1$$

Analog, în \mathbb{M} pentru fiecare NUMĂR x există un NUMĂR y astfel încât:

$$x = y + y \text{ sau } x = y + y + 1$$

În sfârșit, să observăm că în \mathbb{MN} orice număr (cu excepția lui 0) este succesorul unui singur număr. Prin urmare, putem defini o funcție R inversă celei de succesor S, în felul următor:

$$R(0) = 0$$

$$R(Sa) = x$$

Prin S, lui 2 fi corespunde 3; prin R, lui 3 fi corespunde 2 etc. În modelul \mathbb{M}, construiește deci o funcție r, definită prin:

$$r(z) = z$$

$$r(s(x)) = x$$

Acum vom trece la cercetarea efectivă a felului cum arată modelul \mathbb{M}. În primul rând, în \mathbb{M} există un NUMĂR care corespunde lui zero, e deci NUMĂRUL zero în \mathbb{M}, nume z. Cu ajutorul funcției s, construim acum o submulțime a lui A, formată din toți succesorii lui z:

$$z, s(z), s(s(z)), s(s(s(z))), s(s(s(s(z)))), ...$$

Vom numi aceste obiecte NUMERE standard. Șirul acestora este, așa cum se vede cu ușurință, izomorf cu șirul 0, 1, 2, 3, 4, ... al numerelor naturale. Într-adevăr, oricăruia număr natural fi corespunde un și numai un NUMĂR standard, iar $n < m$ dacă $f(n) \not\equiv f(m)$. Intenția noastră e de a putea într-un șir toate NUMERELE (să ne amintim că mulțimea A este numărabilă). În acest șir, segmentul inițial va fi construit de NUMERELE standard. Știm însă că în \mathbb{M} există NUMERE care nu sunt standard, care sunt mai mari decât orice NUMĂR standard. Aceste NUMERE vor urma în șir după ce am cuprins în acesta toate NUMERELE standard.

Fie acum două NUMERE x și y. Vom spune că ele sunt M-echivalente dacă există un NUMĂR standard a astfel încât $x \& a = y$ sau $y \& a = x$. Intuitiv, aceasta însemnă că putem obține pe cel mai mare dintre ele aplicând asupra celuilalt, de un număr finit de ori, funcția z. Evident, oricare două NUMERE standard sunt M-echivalente. Într-adevăr, să presupunem că m este strict mai mare decât n și că ambele NUMERE sunt standard. NUMĂRUL m a fost obținut
aplicând de m ori funcția s asupra lui z, iar n – aplicând de n ori funcția s asupra lui z. Așadar, există NUMĂRUL finit $m-n$ care e cel căutat. Pe de altă parte însă, nici un NUMĂR standard nu este M-echivalent cu unul nestandard c. Căci să presupunem că c ar fi M-echivalent cu un NUMĂR standard m; dacă însă aplicăm de un număr finit de ori, fie acesta n, funcția s asupra lui m, obținem NUMĂRUL $m + n$, care e la rândul lui standard.

Dacă x e NUMĂR, vom spune că segmentul lui x e multimea tuturor NUMERELOR M-echivalente cu x.

Toate NUMERELE standard – deci toate NUMERELE care corespund numerelor naturale – fac parte dintr-un singur segment, cel care începe cu z (și nici un NUMĂR nestandard nu face parte din acest segment). Acest segment standard e infinit, dar numai într-o singură direcție, spre NUMERE mai mari. Fie acum c un NUMĂR nestandard. Segmentul lui x nu este cel standard, căci atunci ar trebui ca c să fie M-echivalent cu un NUMĂR standard, ceea ce am văzut că nu e posibil. Atunci:

1) Orice succesor al lui c este $a)$ în același segment cu c; $b)$ nestandard.
Prin urmare, în segmentul lui c avem șirul infinit c, $s(c)$, $s(s(c))$, $s(s(s(c)))$, ...

2) Orice predecesor al lui c este $a)$ în același segment cu c; $b)$ nestandard.
Prin urmare, în segmentul lui c avem șirul infinit \ldots, $r(r(r(c)))$, $r(r(c))$, $r(c)$, c
Se poate verifica ușor că cele două propoziții sunt adevărate. Din ele decurge că segmentul lui c e un șir infinit în ambele direcții: și spre NUMERE mai mari, și spre NUMERE mai mici, deci e de forma:
\ldots, $r(r(r(c)))$, $r(r(c))$, $r(c)$, $s(c)$, $s(s(c))$, $s(s(s(c)))$, ...

Acest șir este izomorf cu multimea numerelor întregi, unde c stă pentru 0, $s(c)$ pentru 1, $r(c)$ pentru -1 etc. În general, succesorii lui c corespund întregilor pozitivi, iar predecesorii lui c – întregilor negativi.

Segmentul lui c stă, în șirul tuturor NUMERELOR, pe care vrem să-i construim, după segmentul standard.

Dar, ne putem întreba: există un singur segment nestandard? Răspunsul la această întrebare este parte a teoremei (13.12), care rezumă felul în care arată un model nestandard numărabil al teoremei complete a numerelor:

(13.12) Elementele domeniului unui model nestandard numărabil al teoriei complete a numerelor pot fi linear ordonate de relația de ordine strictă \lt și:

a) segmentul inițial al șirului astfel obținut este segmentul standard, care este izomorf cu numerele naturale;

b) orice segment nestandard este izomorf cu șirul numerelor întregi;
c) între orice segment nestandard și segmentul standard se intercalează un alt segment nestandard;

d) între oricare două segmente nestandard se intercalează un alt segment nestandard.

Punctele (a) și (b) au fost probate mai devreme. Punctele (c) și (d) afirmă, în esență, următorul lucru: fie SEG/M mulțimea tuturor segmentelor de NUMERE din M. Această mulțime – așa cum se poate constata ușor – este ordonată de o relație de ordine strictă < într-adevăr, putem pune:

\[X < Y = \text{df. există un } x \in X \text{ și un } y \in Y \text{ astfel încât } x \neq y \text{ și } x \text{ și } y \text{ sunt } M-echivalente. \]

Dacă are loc condiția din definiția, evident că are loc și relația:

oricare ar fi \(x \in X \) și \(y \in Y \), \(x \neq y \).

Punctele (c) și (d) afirmă că < este o relație de ordine strictă pe SEG care:

1) admită segmentul standard ca element minimal (a se vedea definiția (12.6.5));

2) este densă (a se vedea definiția (12.6.3)).

Decurje de aici că și rulul SEG de segmente de NUMERE este izomorf cu șirul numerelor raționale pozitive.

Vom demonstra punctul (c) al teoremei (13.12); punctul (d) este lăsat ca exercițiu.

Să presupunem că există un segment nestandard \(X \) în SEG care urmează imediat după segmentul standard. Să presupunem că NUMĂRUL \(d \) aparține lui \(X \). Dar \(d \) este sau par sau impar. Prin urmare, există un NUMĂR \(c \) astfel încât

\[c \& c = d \text{ sau } c \& c \& s(x) = d \]

Să luăm primul caz (în celălalt raționament decurge analog). NUMĂRUL \(c \), potrivit supozitiei făcute, aparține sau segmentului standard, sau lui \(X \). Dacă \(c \) este standard, atunci desigur că \(c \) și \(d \) trebuie să fie standard, ceea ce înseamnă supozitia făcută. Prin urmare, \(c \) este nestandard. Presupunem acum că \(c \) aparține de asemenea segmentului \(X \). Potrivit definiției segmentului, aceasta înseamnă că \(c \) și \(d \) sunt \(M-echivalente, adică (însemnă aici seamă de faptul că \(c \neq d \) există un NUMĂR standard \(x \) astfel încât

\[c \& x = d. \]

Dar cum, pe de altă parte, am presupus că \(c \& c = d \), avem

\[c \& c = c \& x \]

de unde decurge că

\[c = x. \]

ceea ce contrazice faptul că \(c \neq d \) este un NUMĂR standard. Așadar,

1) \(c \neq d \) nu este un NUMĂR standard;

2) \(c \neq d \);
3) c nu aparține segmentului X; c va aparține unui alt segment Y, iar Y trebuie să fie nestandard – ceea ce contrazice ipoteza că X urmează în șirul SEGM imediat după segmentul standard, q.e.d.